Symphon · Ξ

Symphon-E App Modbus/TCP lesend

Version:2023.6.1

Inhaltsverzeichnis

1.	Modbus/TCP - Lesezugriff	2
	1.1. Voraussetzungen	. 2
	1.2. Grundlagen Modbus/TCP	2
	1.3. Modbus-Tabelle	. 3
	1.4. Beispiel 1: Lesezugriff Batterieladezustand mit QModMaster	7
2.	Kontakt	10
3.	Verzeichnisse	11
	3.1. Abbildungsverzeichnis	. 11
	3.2. Tabellenverzeichnis	12

1. Modbus/TCP - Lesezugriff

Diese Anleitung dient der Beschreibung des Lesezugriffs auf ein Heckert Solar Stromspeichersystem mittels Modbus/TCP API. Zunächst werden Grundlagen zum Protokoll beschrieben. Anschließend wird die Funktionsweise der Schnittstelle erklärt.

Die auslesbaren Daten werden in Echtzeit erfasst und können Abweichungen oder Ungenauigkeiten enthalten. Diese Daten dienen lediglich zu Informationszwecken und dürfen nicht als Grundlage für rechtlich verbindliche Entscheidungen oder Handlungen verwendet werden.

1.1. Voraussetzungen

Das auf das Stromspeichersystem zugreifende Gerät (z.B. Notebook/PC) muss direkten Zugriff auf die IP-Adresse des EMS haben - also z. B. im gleichen physischen Netzwerk angeschlossen sein.

1.2. Grundlagen Modbus/TCP

Das Modbus-Protokoll ist ein Kommunikationsprotokoll, das auf einer Client/Server-Architektur basiert. Es wurde 1979 von Gould-Modicon für die Kommunikation mit seinen speicherprogrammierbaren Steuerungen ins Leben gerufen. In der Industrie hat sich der Modbus zu einem De-facto-Standard entwickelt, da es sich um ein offenes Protokoll handelt. Seit 2007 ist die Version Modbus TCP Teil der Norm IEC 61158.

Wikipedia: Modbus/TCP

Mittels Modbus können ein Client (z. B. ein PC/EMS) und mehrere Server (z. B. Mess- und Regelsysteme, Batteriespeicher, PV-Anlage, Ladestation E-Auto) verbunden werden. Es gibt zwei Versionen: Eine für die serielle Schnittstelle (EIA-232 und EIA-485) und eine für Ethernet. In dieser Anleitung wird die Version für Ethernet beschrieben. Hierbei werden TCP/IP-Pakete verwendet, um die Daten zu übermitteln.

Objekttyp	Zugriff	Größe	Funktionscode
Einzelner Ein-/Ausgang "Coil"	Lesen & Schreiben	1-bit	01 / 05 / 15
Einzelner Eingang "Discrete Input"	nur Lesen	1-bit	02
(analoge) Eingänge "Input Register"	nur Lesen	16-bits	04
(analoge) Ein-/Ausgänge "Holding Register"	Lesen & Schreiben	16-bits	03 / 06 / 16

Lese- und Schreibzugriffe sind auf folgende Objekttypen möglich:

Die Schnittstelle für den Lesezugriff ist bereits ab Werk inklusive und vorinstalliert.

Die Modbus-Schnittstelle ist folgendermaßen konfiguriert:

Geräteadresse

IP-Adresse des EMS (z.B. 192.168.0.20)

Symphon·Ξ

Port	502
Unit-ID	1
Function-Codes	03 (Read Holding Registers)
	04 (Read Input Registers)

Table 1. Parameter für Lesezugriff

Die Schnittstelle ermöglicht standardmäßig Zugriff auf die Kanäle der Komponente_sum.

1.3. Modbus-Tabelle

Die individuelle Modbus-Tabelle für Ihr System können Sie bequem über das Online-Monitoring als Excel-Datei wie folgt herunterladen:

Heckert Solar Symph	on-E Online Monitoring	
1	Energiemonitor	A
	6,6 kW 4,3 kW 2,2 kW 2 C kW 0 kW 0 kW	Beladur Entladu

Abbildung 1. Reiter links oben im Online-Monitoring öffnen

1.3. Modbus-Tabelle

Abbildung 2. Reiter "Einstellungen" öffnen

Abbildung 3. Anlagenprofil öffnen

Externe Schnittstellen
Modbus/TCP Schreibzugriff @

for ctrlApiModbusTcp0 Controller Api Modbus/TCP Read-Write

 apiTimeout: 500
 component.ids: _sum,ess1
 maxConcurrentConnections: 5
 port: 502
DOWNLOAD PROTOCOL ANLEITUNG EXPORT CHANNELS

Abbildung 4. ctrlApiModbusTcp öffnen und auf "Download Protocol" klicken

Die wichtigsten	Datenpunkte find	en Sie auch hier ir	n der Schnellübersicht:
-----------------	------------------	---------------------	-------------------------

Address (Adresse)	Name (Name)	Туре (Тур)	Value/Description (Wert/Beschreibung)	Unit (Einheit)	Access (Zugang)
200	Component-ID	string16	_sum		RO
222	State	enum16	0:Ok, 1:Info, 2:Warning, 3:Fault		RO
302	EssSoc	uint16	Ladezustand [0 - 100]	Prozent [%]	RO
303	EssActivePower	float32	AC-seitige Wirkleistung des Speichers inkl. überschüssiger DC-Erzeugung bei Hybrid- Wechselrichter	Watt [W]	RO
309	EssReactivePower	float32	AC-seitige Blindleistung des Speichers	Voltampere Reaktiv [var]	RO
315	GridActivePower	float32	Wirkleistung am Netzanschlusspunkt	Watt [W]	RO
317	GridMinActivePower	float32	Minimale je gemessene Wirkleistung am Netzanschlusspunkt	Watt [W]	RO
319	GridMaxActivePower	float32	Maximale je gemessene Wirkleistung am Netzanschlusspunkt	Watt [W]	RO
327	ProductionActivePower	float32	Wirkleistung des PV-Ertrags und ggf. Ertrag durch externe Wechselrichter	Watt [W]	RO
329	ProductionMaxActivePower	float32	Maximale je gemessene Wirkleistung der PV-Anlage	Watt [W]	RO

1.3. Modbus-Tabelle

Symphon·Ξ

331	ProductionAcActivePower	float32	Wirkleistung der externen AC- Wechselrichter	Watt [W]	RO
339	ProductionDcActualPower	float32	Leistung der DC-Erzeugung des Hybridwechselrichters	Watt [W]	RO
343	ConsumptionActivePower	float32	Wirkleistung des elektrischen Verbrauchs	Watt [W]	RO
345	ConsumptionMaxActivePower	float32	Maximale je gemessene Wirkleistung des elektrischen Verbrauchs	Watt [W]	RO
351	EssActiveChargeEnergy	float64	Kumulierte elektrische Energie der AC-seitigen Speicherbeladung inkl. überschüssige PV-Erzeugung beim Hybrid-Wechselrichter	Wattstunden [Wh]	RO
355	EssActiveDischargeEnergy	float64	Kumulierte elektrische Energie vom Speicher zum Verbrauch über AC-Ausgang des Wechselrichters inkl. PV- Erzeugung	Wattstunden [Wh]	RO
359	GridBuyActiveEnergy	float64	Kumulierte elektrische Energie des Netzbezuges	Wattstunden [Wh]	RO
363	GridSellActiveEnergy	float64	Kumulierte elektrische Energie der Einspeisung	Wattstunden [Wh]	RO
367	ProductionActiveEnergy	float64	Kumulierte elektrische Energie der PV-Erzeugung + Erzeugung externer Wechselrichter	Wattstunden [Wh]	RO
371	ProductionAcActiveEnergy	float64	Kumulierte elektrische Energie der externen Wechselrichter	Wattstunden [Wh]	RO
375	ProductionDcActiveEnergy	float64	Kumulierte elektrische Energie der PV-Erzeugung des Wechselrichters	Wattstunden [Wh]	RO
379	ConsumptionActiveEnergy	float64	Kumulierter elektrischer Verbrauch	Wattstunden [Wh]	RO
383	EssDcChargeEnergy	float64	Kumulierte DC-elektrische Energie der Speicherbeladung	Wattstunden [Wh]	RO
387	EssDcDischargeEnergy	float64	Kumulierte DC-elektrische Energie der Speicherentladung	Wattstunden [Wh]	RO
415	EssDischargePower	float32	Tatsächliche AC-seitige Wirkleistung des Speichers	Watt [W]	RO
417	GridMode	enum16	1:On-Grid, 2:Off-Grid		RO

Table 2. Modbus-Tabelle Komponente Sum

1.4. Beispiel 1: Lesezugriff Batterieladezustand mit QModMaster

Im Folgenden soll der Lesezugriff auf den Ladezustand (SoC) der Batterie mittels des kostenlosen Tools *QModMaster* exemplarisch gezeigt werden.

Das Tool kann unter folgendem Link heruntergeladen werden: Online: https://sourceforge.net/projects/qmodmaster/

Der Wert des Ladezustands ist wie folgt hinterlegt (s. oben):

Address	Name	Туре	Value/Description	Unit	Access
302	_sum/EssSoc	uint16		Percent [%]	RO

Table 3. Registeradresse für den Ladezustand der Batterie

Standardmäßig wird in QModbusMaster die *Base Address* auf **1** gesetzt. Dieser Wert ist auf **0** zu ändern. Anderenfalls sind die Registeradressen aus dem Anlagenprofil um 1 verschoben.

Regulation QModMaster		- 🗆 ×
File Options Commands	View Help	
9 🕑 🗾 🖀 🔉 '	😓 C 📄 🗉 🔏 🧮 👳	2 0 0
Modbus Mode TCP 🗸 Unit II	0 1	
Function Code Read Input Re	Max No Of Bus Monitor Lines 60	ec 🗸
Number of Registers 1	Response Timeout (sec)	
-	Base Addr 0 €	
	OK Cancel	
• TCP : 10.0.3.75:502 Base Add	dr: 0 Packets: 0 Endian: Big	Errors : 0

Abbildung 5. Einstellungen

Unter Modbus TCP Settings müssen Slave IP und TCP Port richtig konfiguriert sein.

🚅 QModMaster	_		\times
File Options Commands View Help			
9 🕞 🗾 🕄 🏷 C 📑 🔍 🖤	≞ 🗹	Q 🔒	0
Modbus Mode TCP V Unit ID 1 🖨 Scan Rate (ms) 1000 🖨			
Function Code Read Input F Modbus TCP Settings ? X	Dec 🗸		
Number of Registers 1 🖨 Slave IP 100375_			
78 TCP Port 502			
TCP: 10.0.3.75:502 Base Addr: 0 Packets: 1 Endian: Big	Erro	ors:0	

Abbildung 6. Modbus TCP Einstellungen

Da es sich um einen *unit16* handelt, muss ein 16-bit Wort, also ein Register, ausgelesen werden. Nach Setzen der Werte auf den Menüpunkt "Read/Write" klicken. Der gelesene Wert erscheint unten.

🗬 QModMaster —	×				
File Options Commands View Help					
9 🕑 📝 🚟 😂 🏷 😋 🗒 💷 🔏 📰 🛛 👻 🕄	٢				
Modbus Mode TCP V Unit ID 1 🖨 Scan Rate (ms) 1000 🖨					
Function Code Read Input Registers (0x04) V Start Address 302 ਦ Dec V					
Number of Registers 1 🚖 Data Format Dec 🗸 Signed 🗌					
78					
TCP: 10.0.3.75:502 Base Addr: 0 Packets: 1 Endian: Big Errors: 0					

Abbildung 7. Wert lesen

Der Abgleich mit dem Online-Monitoring bestätigt die Korrektheit des gelesenen Wertes.

Speichersystem	
78 % Beladung	0 kW
Entladung	-

Die Durchführung anderer Leseoperationen erfolgt analog.

2. Kontakt

Für Unterstützung wenden Sie sich bitte an:

Symphon-E Service

Telefon Service: +49 (0) 371 45 85 68 - 100

E-Mail Service: symphon-e@heckert-solar.com

3. Verzeichnisse

3.1. Abbildungsverzeichnis

Abbildung 1. Reiter links oben im Online-Monitoring öffnen
Abbildung 2. Reiter "Einstellungen" öffnen
Abbildung 3. Anlagenprofil öffnen
Abbildung 4. ctrlApiModbusTcp öffnen und auf "Download Protocol" klicken
Abbildung 5. Einstellungen
Abbildung 6. Modbus TCP Einstellungen
Abbildung 7. Wert lesen
Abbildung 8. Vergleich mit Online-Monitoring

3.2. Tabellenverzeichnis

- Table 1. Parameter für Lesezugriff
- Table 2. Modbus-Tabelle Komponente Sum
- Table 3. Registeradresse für den Ladezustand der Batterie